Short interfering RNA-mediated interference of gene expression and viral DNA accumulation in cultured plant cells.

نویسندگان

  • Ramachandran Vanitharani
  • Padmanabhan Chellappan
  • Claude M Fauquet
چکیده

Gene silencing mediated by double-stranded RNA is a sequence-specific RNA degradation mechanism highly conserved in eukaryotes that serves as an antiviral defense pathway in both plants and Drosophila. Short interfering RNAs (siRNAs), the 21- to 23-nt double-stranded intermediates of this natural defense mechanism, are becoming powerful tools for reducing gene expression and countering viral infection in a variety of mammalian cells. Here we report the use of siRNAs to target reporter gene expression and viral DNA accumulation in cultured plant cells. Transient expression of reporter genes encoding either GFP or red fluorescent protein from Discosoma was specifically reduced by 58% and 47%, respectively, at 24 h after codelivery of cognate siRNAs in BY2 protoplasts. In contrast to mammalian systems, the siRNA-induced silencing of GFP expression was transitive as indicated by the presence of siRNAs representing parts of the target RNA outside the region homologous to the triggering siRNA. Codelivery of an siRNA designed to target the mRNA encoding the replication-associated protein (AC1) of the geminivirus African cassava mosaic virus (ACMV) from Cameroon blocked AC1 mRNA accumulation by approximately 91% and inhibited accumulation of the ACMV genomic DNA by approximately 66% at 36 and 48 h after transfection. As with siRNA-induced reporter gene silencing, the siRNA targeting ACMV AC1 was specific and did not affect the replication of East African cassava mosaic Cameroon virus. This report demonstrates the occurrence of siRNA-mediated suppression of gene expression in cultured plant cells and that siRNA can interfere with and suppress accumulation of a nuclear-replicated DNA virus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bcr-abl Silencing by Specific Small-Interference RNA Expression Vector as a Potential Treatment for Chronic Myeloid Leukemia

Background: RNA interference (RNAi) is the mechanism of gene silencing-mediated messenger RNA degradation by small interference RNA (siRNA), which becomes a powerful tool for in vivo research, especially in the areas of cancer. In this research, the potential use of an expression vector as a specific siRNA producing tool for silencing of Bcr-abl in K562 cell line has been investigated. Methods:...

متن کامل

مهار بیان ژن GFP به وسیله تداخل RNA (RNAi) در دودمان سلولی کارسینومای جنینی P19

 Introduction: RNA interference (RNAi) is a phenomenon of gene silencing that uses double-stranded RNA (dsRNA), specifically inhibits gene expression by degrading mRNA efficiently. The mediators of degradation are 21- to 23-nt small interfering RNAs (siRNA). The use of siRNAs as inhibitors of gene expression has been shown to be an effective way of studying gene function in mammalian cells.  Ai...

متن کامل

Small interfering RNA; principles, applications and challenges--

Gene silencing using RNAi (RNA interference), has recently been used as a successful laboratory technique in determining the function and control of gene expression and provides a wide range of applications in molecular biology and gene therapy. RNAi is a method of suppressing gene expression. In this direction, a single-stranded RNA molecule of about 21–23 nucleotides, called siRNA (small inte...

متن کامل

Enhancement of RNA Interference Effect in P19 EC Cells by an RNA-dependent RNA Polymerase

Background: RNA interference (RNAi) is a phenomenon uses double-stranded RNA (dsRNA) to specifically inhibit gene expression. The non-specific silencing caused by interferon response to dsRNA in mammalian cells limits the potential of utilizing RNAi to study gene function. Duplexes of 21-nucleotide short interfering dsRNA (siRNA) inhibit gene expression by RNAi. In some organisms, siRNA can als...

متن کامل

Short defective interfering RNAs of tombusviruses are not targeted but trigger post-transcriptional gene silencing against their helper virus.

Post-transcriptional gene silencing (PTGS) is a sequence-specific degradation mechanism that operates in almost all eukaryotic cells. In plants, double-stranded RNA triggers PTGS, generating 21- to 25-nucleotide guide RNAs responsible for specific degradation of cognate mRNA. The double stranded RNA intermediates of replicating plant viruses often induce PTGS, leading to symptom attenuation. He...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 16  شماره 

صفحات  -

تاریخ انتشار 2003